Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Deposition of metal-ceramic Ti–ZrB2 coating on titanium alloy Ti–6Al–4V by electrospark alloying method using a non-localized electrode

https://doi.org/10.22349/1994-6716-2025-123-3-69-79

Abstract

Ti–ZrB2 coatings on titanium alloy Ti–6Al–4V were prepared by the method of electrospark deposition with a non-localized electrode, using titanium granules and ZrB2 powder. It was found that the structure of the coatings corresponds to a metal-ceramic material, where α-Ti and β-Ti act as a metal matrix, and ZrB2 is a reinforcing phase. The concentration of ZrB2 in coatings was in the range from 38 to 92%. It was shown that with an increase in the concentration of ZrB2 in coatings, their hardness increased monotonously from 10.79 to 15.86 GPa. With an increase in the ZrB2 content, the average wear of the coatings was monotonously reduced. This indicates the good wettability of ZrB2 particles by titanium melt.

About the Authors

A. A. Burkov
Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand Sc. (Phys-Math) 

153 Tikhookeanskaya St, 680042 Khabarovsk 



L. A. Konevtsov
Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand Sc. (Phys-Math) 

153 Tikhookeanskaya St, 680042 Khabarovsk 



A. Yu. Bytsura
Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

153 Tikhookeanskaya St, 680042 Khabarovsk 



References

1. . Alabort , E . , et al . Allloys-by-Design: A Low-Modulus Titanium Allloy for Additively Manufactured Biomedical Implants, Acta Materialia, 2022, V. 229, p. 117749. URL: https://doi.org/10.1016/j.actamat.2022.117749

2. Ding, H.H., et al., Investigation on Mechanical Properties of Tribofilm Formed on Ti–6Al–4V Surface Sliding Against A DLC Coating by Nano-Indance and Micro-Pillar Compression Techniques, Wear, 2019, V. 432, p. 202954. URL: https://doi.org/10.1016/j.wear2019.202954

3. Chikarakara, E., Naher, S., Brabazon, D., High speed laser surface modification of Ti–6Al– 4V, Surface and Coatings Technology, 2012, V. 206, No 14, pp. 3223–3229. URL: https://doi.org/10.1016/j.surfcoat.2012.01.010

4. Rau, J.V., et al., Hardness of Zirconium Diboride Films Deposited on Titanium Substrates, Materials Chemistry and Physics, 2008, V. 112, No 2, pp. 504–509. URL: https://doi.org/10.1016/J.MATCHEMPHYS.2008.06.004

5. Wank, A., et al., Protection of Ti–6Al–4V Surfaces by Laser Dispersion of Diborides, Journal of Thermal Spray Technology, 2005, V. 14, pp. 134–140. URL: https://doi.org/10.1361/10599630522684

6. Zorin, I.V., Sokolov, G.N., Artemyev, A.A., Dubtsov, Yu.N., Denisevich, D.S., Lysak, V.I., Kharlamov, V.O., Issledovanie vliyaniya sootnosheniya legiruyushchikh elementov v sisteme Ni–Al–Cr–W–Mo–Ta na stoikost naplavlennogo metalla k termicheskoi ustalosti [Study of the influence of the ratio of alloying elements in the Ni–Al–Cr–W–Mo–Ta system on the resistance of the deposited metal to thermal fatigue], Voprosy materialovedeniya, 2020, V. 2 (102), pp. 74–86. URL: https://doi.org/10.22349/1994-6716-2020-102-2-74-86

7. Mihoob, M.M., et al., Optimizing the Thermal Spray Parameters for Producing High-Performance Mo/ZrB 2 Metal Matrix Composites Using the Taguchi Method, Coatings, 2023, V. 13, No 9, pp. 1620. URL: https://doi.org/10.3390/coatings13091620

8. . Tului, M. , et al. , Some Properties of Atmosphereic Air and Inert GAS High-Pressure Plasma SPRYED ZRB 2 Coatings, Surface and Coatings Technology, 2002, V. 151–152, pp. 483–489. URL: https://doi.org/10.1016/s0257-8972(01)01572-9

9. Bartuli, C., Valente T., Tului, M., Plasma spray deposition and high temperature characterization of ZrB 2–SiC protective coatings, Surface and Coatings Technology, 2002, V. 155, No 2–3, pp. 260–273. URL: https://doi.org/10.1016/s0257-8972(02)00058-0

10. Randich, E., Allred, D.D., Chemically vapor-deposited ZrB/sub 2/as a selective solar absorber, Thin Solid Films (Switzerland), 1981, V. 83, No 4, pp. 393–398. URL: https://doi.org/10.1016/0040-6090(81)90646-5

11. Kirayukhantsev-Kornev, P., et al., Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZRB2 and Zr–BN Coatings, Metals, 2021, V. 11, No 8, p. 1194. URL: https://doi.org/10.3390/met111081194

12. Podchernyaeva, I.A., et al., High-Energy Electrospark Surface Strengthening of Steels with Composite Ceramics, Powder Metallurgy and Metal Ceramics, 2014, V. 52, Iss. 11, pp. 656–662. URL: https://doi.org/10.1007/s111106-014-9573-7

13. Markov, M.A., Persinin, S.A., Krasikov, A.V., Bykova, A.D., Belyakov, A.N., Fadin, Yu.A., Osobennosti formirovaniya antifriktsionnykh pokrytiy na titane metodom elektroiskrovogo legirovaniya s ispolzovaniem metallokeramicheskikh anodov [Features of the formation of antifriction coatings on titanium by the method of electric spark alloying using metal-ceramic anodes], Voprosy materialovedeniya, 2019, V. 4 (100), pp. 61–67. URL: https://doi.org/10.22349/1994-6716-2019-100-4-61-67

14. Tarelnyk, V.B., et al., Electrospark Deposition of Multilayer Coatings, Powder Metallurgy and Metal Ceramics, 2020, V. 59, pp. 76–88. URL: https://doi.org/10.1007/s11106-020-00140-x

15. Burkov, A.A., Bytsura, A.Yu., Influence of Substrate Surface on Electro-Spark Alloying, Surface Engineering and Applied ElectroChemistry, 2024, V. 60, No 2, pp. 204–210. URL: https://doi.org/10.3103/s106837524020030

16. Burkov, A . A . , K u l i k , M . A . , Korrozionnaya i tribotekhnicheskaya kharakteristika metallomatrichnykh Fe–Ti–Cr–B pokrytiy [Corrosion and tribotechnical characteristics of the metal-shaped Fe–Ti– Cr–B coatings], Svarochnoe proizvodstvo, 2021, No 12, p. 43.

17. Burkov, A.A., Chigrin, P.G., Kulik, M.A., Effect of TaC content on microstructure and wear behavior of PRMMC Fe–TaC coating manufactured by electrospark deposition on AISI304 stainless steel, Surface and Coatings Technology, 2024, V. 494, p. 131446. URL: https://doi.org/10.1016/j.surfcoat.2024.131446

18. Burkov, A . A . , Improvement of Ti–6Al–4V-ally Wear Resistance by Electric-Spark Hafnium Carbide Coatings, Journal of Friction and Wear, 2020, V. 41, pp. 543–548. URL: https://doi.org/10.3103/s1068366620060045

19. Burkov, A . A. , et al . , Elektroiskrovoe osazhdenie poroshka diborida khroma na nerzhaveyushchuyu stal AISI 304 [Electric precipitation of chromium diboride powder on stainless steel AISI 304], Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty, 2022, V. 24, No 2, pp. 78–90. URL: https://doi.org/10.17212/1994-6309-2022-24.2-78-90

20. Burkov, A . A . , Poluchenie amorfnykh pokrytiy elektroiskrovoi obrabotkoi stali 35 v smesi zheleznykh granul s CrMoWCBSi poroshkom [Obtaining amorphous coatings by spark-plasma treatment of steel 35 in a mixture of iron granules and CrMoWCBSi powder], Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty, 2019, V. 21, No 4, pp. 19–30.

21. Cassie, A.B.D., Baxter, S., Wettability of Porous Surface, Transactions of the Faraaday Society, 1944, V. 40, pp. 546–551.

22. Chen, C. , et al . , Effect of ZRB2 on Microstructure and Wear Properties of TC4 Alloy Coatings by Laser Direct Energy Deposition, Materials Chemistry and Physics, 2024, p. 130208. URL: https://doi.org/10.1016/J.MATCHEMPHYS.2024.130208

23. Bsenko, L., Lundström, T., The high-temperature hardness of ZrB2 and HfB2, Journal of the Less Common Metals, 1974, V. 34, No 2, pp. 273–278. URL: https://doi.org/10.1016/0022-5088(74)90169-6

24. Li, Q. H. , et al . , Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposite on AISI 1045 Steel by the Electroospark Process, Metallurgical and Materials Transaction, 2013, V. 44, pp. 1767–1778. URL: https://doi.org/10.1007/S11661-012-1535-4

25. Li, Y.C., et al., Effect of Spray Powder Particle Size on the Bionic Hydrophobic Structures and Corrosion Performance of Fe-Based Amorphous Metallic Coatings, Surface and Coatings Technology, 2022, V. 437, p. 128377. URL: https://doi.org/10.1016/j.surfcoat.2022.128377

26. Farotade, G.A., et al., Microstructural Characterization and Surface Properties of Laser Clad Ni– ZrB 2 Coatings on Ti–6Al–4V Alloy, Materials Today: Proceedings, 2021, V. 38, pp. 1035–1039. URL: https://doi.org/10.1016/J.MATPR.2020.05.780

27. Archard, J.F., Contact and Rubbing of Flat Surface, Journal of Applied Physics, 1953, V. 24, No 8, pp. 981–988. URL: https://doi.org/10.1063/1.1721448


Review

For citations:


Burkov A.A., Konevtsov L.A., Bytsura A.Yu. Deposition of metal-ceramic Ti–ZrB2 coating on titanium alloy Ti–6Al–4V by electrospark alloying method using a non-localized electrode. Voprosy Materialovedeniya. 2025;(3(123)):69-79. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-69-79

Views: 7


ISSN 1994-6716 (Print)