Pulsed galvanostatic electrolysis modes for enhancing corrosion resistance of eco-friendly tin-zinc alloy coatings
https://doi.org/10.22349/1994-6716-2025-123-3-97-107
Abstract
The influence of pulsed galvanostatic electrolysis modes (unipolar and reverse) on the corrosion resistance and functional properties of eco-friendly tin-zinc (Sn–Zn) alloy coatings was investigated. An alkaline solution with sodium citrate and sodium lauryl sulfate additives was used as the electrolyte. The unipolar mode (5 ms, 1.5 A/dm²) provided high current efficiency (72%) and microhardness (950–1050 MPa) but increased porosity (7–12%). The reverse mode (5 ms cathodic/anodic phases, 2.0/0,5 A/dm²) demonstrated minimal porosity (2–4%), reduced internal stresses (50–80 MPa), and maximum corrosion resistance (>1200 hours in salt spray). It was established that the anodic phases of the reverse mode level the surface, reducing defects. Pulsed technologies have surpassed stationary electrolysis in wear resistance (2–3 times), microhardness (+15–25%), and solderability (wetting angle 12–18°). The reverse mode is recommended for marine electronics and aviation, while the unipolar mode is suitable for tasks prioritizing microhardness. The results contribute to the development of eco-friendly alternatives to toxic coatings in compliance with RoHS/REACH directives.
About the Authors
S. Yu. KireevRussian Federation
Dr Sc.
40 Krasnaya St, 440026, Penza
G. V. Kozlov
Russian Federation
Dr Sc.
40 Krasnaya St, 440026, Penza
S. N. Kireeva
Russian Federation
Cand Sc.
40 Krasnaya St, 440026, Penza
A. Z. Yangurazova
Russian Federation
40 Krasnaya St, 440026, Penza
Yu. N. Kirilina
Russian Federation
Cand Sc.
40 Krasnaya St, 440026, Penza
A. S. Balyberdin
Russian Federation
40 Krasnaya St, 440026, Penza
References
1. Joscha, B., Annkatrin, K., Michael, R., Beyond RoHS and REACH: Relevant CMR Substances in Electronic Products, Electronics Goes Green 2024+(EGG), IEEE, 2024, pp. 1–5.
2. Dubent, S., Mertens, M.L.A.D., Saurat, M., Electrodeposition, characterization and corrosion behaviour of tin–20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath, Materials Chemistry and Physics, 2010, V. 120, No 2–3, pp. 371–380.
3. Maniam, K.K., Paul, S., Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment, Corrosion and Materials Degradation, 2021, V. 2, No 2, pp. 163–189.
4. Wang, K., Pickering, H.W., Weil, K.G., Tin-zinc alloy electroplating and its corrosion behavior, Prod Finish, 2023, V. 867, pp. 6–11.
5. . Kireev, S. Yu. , Formirovanie i issledovanie svoistv finishnykh pokritiy pechatnykh plat splavom olovo-tsink vzamen pokritiy splavom olovo-svinets [Formation and investigation of the properties of finishing coatings of printed circuit boards with tin-zinc alloy instead of tin-lead alloy coatings], Korroziya: materiali, zaschita, 2015, No 8, pp. 7–12.
6. Yangurazova, A.Z., Kireev, S.Yu., K voprosu o poiske alternativy kadmievomu pokritiyu [On the question about searching an alternative to cadmium coating], Uspekhi v khimii i khimicheskoi tekhnologii, 2021, V. 35, No 5 (240), pp. 34–35.
7. Liu , P. , et al . , Study on microstructure and properties of mechanically deposited Zn-Sn coating, Coatings, 2022, V. 12, No 12.
8. Benidir, S., Madani, A., Baka, O., Kherfi, A., Delhalle, J., Mekhalif, Z., Influence of applied potential on tin content in electrodeposition of Zn–Sn alloy coatings and its effect on corrosion protection, Inorganic and Nano-Metal Chemistry, 2022, V. 52, No 7, pp. 899–909.
9. Shepelevich, V.G., Zernitsa, D.A., The formation of the structure of the alloys of the tin–zinc system upon high-speed solidification, Inorganic Materials: Applied Research, 2021, V. 12, Is. 4, pp. 1094–1099.
10. Zernitsa, D.A., Shepelevich, V.G., Structure formation and peculiarities of crystallization of lead-free tin–zinc alloys obtained by rapid solidification, Journal of the Belarusian State University. Physics, 2022, No 3, pp. 48–55.
11. Tamhane, D., Thalapil, J., Banerjee, S., Tallur, S., Smart cathodic protection system for realtime quantitative assessment of corrosion of sacrificial anode based on electro-mechanical impedance (EMI), IEEE Access, 2021, V. 9, pp. 12230–12240.
12. Grachev, V. A. , Rozen , A. E. , Perelygin, Y. P. , Kireev, S. Y. , Los , I . S . , Multilayer corrosion-resistant material based on iron–carbon alloys, Heliyon, 2020, V. 6, No 5.
13. Rozen , A . E. , Loginov, O. N. , Rosen , A . A . , Kireev, S. Yu. , Sevostyanov, N . V. , Structure of the interlayer boundary of layered metal materials with an internal protector obtained via explosion welding, Metallurgist, 2022, V. 66, No 5, pp. 586–592.
14. Kirikova, D.I., Kireeva, S.N., Kireev, S.Yu., Perelygin, Y.P., Elektroosazhdenie tsinka iz kislogo laktatnogo elektrolita s ispolzovaniem unipolyarnogo galvanostaticheskogo rezhima impulsnogo elektroliza [Electrodeposition of zinc from acid lactate bath using unipolar galvanostatic pulses], Galvanotekhnika i obrabotka poverkhnosti, 2016, V. 24, No 3, pp. 32–38.
15. Kireev, S.Yu., Perelygin, Y.P., Kireeva, S.N., Jaskula, M.J., Methods to determine the current efficiency in AC electrolysis, Arabian Journal for Science and Engineering, 2021, V. 46, pp. 343–352.
16. Kireev, S . Yu. , Frolov, A . V. , Electrodeposition of nickel coatings from acetate-chloride electrolyte using galvanostatic pulse electrolysis, Protection of Metals and Physical Chemistry of Surfaces, 2021, V. 57, pp. 1375–1379.
17. Zhang, Z., Gao, Q., Ao, J., Yao, L., Bi, J., Gao, S., Jeng, M.-J., Sun, G., Zhou, Z., Liu, F., Zhang, Y., Sun, Y., Morphology Modification of Sn and Zn Metal Thin Films Applied for CZTSe Solar Cell: The Effect of Pulse Current Electrodeposition, 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018, Institute of Electrical and Electronics Engineers Inc., 2018, pp. 881–886.
18. Burton, N.A., Grant, J.C., Increasing the efficiency of water electrolysis with the application of pulsing electric fields, Renewable and Sustainable Energy Reviews, 2025, V. 215.
19. Lu, H., Zhang, L., Xi, X., Nie, Z., Optimization of pulse bi-directional electrolysis in-situ synthesis of tungsten carbide by response surface methodology, International Journal of Refractory Metals and Hard Materials, 2023, V. 111.
20. Du, W., Yan, J., Cao, C., Li, C.C., Electrocrystallization orientation regulation of zinc metal anodes: strategies and challenges, Energy Storage Materials, 2022, V. 52, pp. 329–354.
21. Cao, F., Wang, J., Lian, Y., et al., A study on the influence of the electroplating process on the corrosion resistance of zinc-based alloy coatings, Coatings, 2023, V. 13, No 10.
22. Liang, J., Li, J., Dong, H., et al., Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions, Nature Communications, 2024, V. 15, No 1.
23. Kazimierczak, H., Ozga, P., Jałowiec, A., Kowalik, R., Tin–zinc alloy electrodeposition from aqueous citrate baths, Surface and coatings technology, 2014, V. 240, pp. 311–319.
24. Perelygin , Yu. P. , Kireev, S. Yu. , Vinogradov, S . N . , Iznosostoykost i antifriktsionnye svoistva galvanicheskikh pokrytii palladiem, olovom, tsinkom i splavami na ikh osnove [Wear resistance and antifrictional properties of galvanic coatings of the palladium, tin, zinc and alloys on their basis], Trenie i smazka v mashinakh i mekhanizmakh, 2012, No 10, pp. 13–16.
25. Kireev, S.Yu., Perelygin, Yu.P., Metody opredeleniya payaemosti pokrytii [Measurement of coatings solderability], Galvanotekhnika i obrabotka poverkhnosti, 2011, V. 19, No 2, pp. 52–57.
26. Zhang, Y., Zhang, T., Wan, H., Li, G., Liu, H., Mechanism of microbiologically induced anaerobic water-line corrosion of 980 high strength steel in nutrient-rich artificial seawater, Corrosion Science, 2023, V. 220.
27. Chung , Y. , Lee , C . W. , Electrochemically fabricated alloys and semiconductors containing indium, Journal of Electrochemical Science and Technology, 2012, V. 3, No 3, pp. 95–115.
Review
For citations:
Kireev S.Yu., Kozlov G.V., Kireeva S.N., Yangurazova A.Z., Kirilina Yu.N., Balyberdin A.S. Pulsed galvanostatic electrolysis modes for enhancing corrosion resistance of eco-friendly tin-zinc alloy coatings. Voprosy Materialovedeniya. 2025;(3(123)):97-107. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-97-107






















