Structure and properties of polymer composite materials based on polytetrafluoroethylene and halloysite of different grades
https://doi.org/10.22349/1994-6716-2025-123-3-108-121
Abstract
The paper studies the effect of halloysite nanotubes of three grades on changes in the physical, mechanical and tribological properties, as well as the structure of polytetrafluoroethylene. Halloysite is a kaolinite rolled into a tube and has the chemical formula Al2[Si2O5](OH)4. The studied halloysite grades differ in textural characteristics and phase composition. It is shown that composites reinforced with halloysite demonstrate a significant decrease in the wear rate of polytetrafluoroethylene (by 400 times) while maintaining a low friction coefficient (~0.20). With an increase in the halloysite content to 5 wt. %, the elastic modulus of the material increases significantly. It is shown that the introduction of halloysite grade ANT 811 improves the relative elongation by 9 times and wear resistance by 6 times compared to halloysite grade ANT 3810. Changes in wear resistance and
Keywords
About the Authors
P. N. TarasovaRussian Federation
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
Yu. V. Kapitonova
Russian Federation
Cand. Sc.
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
N. P. Sivtseva-Gladkina
Russian Federation
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
N. N. Lazareva
Russian Federation
Cand. Sc.
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
A. A. Okhlopkova
Russian Federation
Dr Sc. (Eng)
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
Yu. V. Kychkina
Russian Federation
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
A. A. Kanaeva
Russian Federation
58 Belinskogo St, 677000 Yakutsk, Republic of Sakha (Yakutia)
References
1. Xiao, W., Ji, X., Effect of nano fillers on the properties of polytetrafluoroethylene composites: Experimental and theoretical simulations, Journal of Applied Polymer Science, 2021, V. 138, No 45, p. 51340. DOI: 10.1002/app.51340
2. Chan , J. X . , Wong , J. F. , Petrů, M . , Hassan, A . , Nirmal, U. , Othman , N., Ily a s , R . A ., Effect of nanofillers on tribological properties of polymer nanocomposites: A review on recent development, Polymers, 2021, V. 13, No 17, p. 2867. DOI: 10.3390/polym13172867
3. Liu , M ., Jia, Z ., Jia, D., Zhou , C ., Recent advance in research on halloysite nanotubes-polymer nanocomposite, Progress in polymer science, 2014, V. 39, No 8, pp. 1498–1525. DOI: 10.1016/j.progpolymsci.2014.04.004
4. Cheng, C., Song, W., Z hao, Q., Z ha ng, H., Halloysite nanotubes in polymer science: Purification, characterization, modification and applications, Nanotechnology Reviews, 2020, V. 9, No 1, pp. 323– 344. DOI: 10.1515/ntrev-2020-0024
5. . K a u s a r , A . , Review on polymer/halloysite nanotube nanocomposite, Polymer-Plastics Technology and Engineering, 2018, V. 57, No 6, pp. 548–564. DOI: 10.1080/03602559.2017.1329436
6. Idumah, C. I., Hassan, A., Ogbu , J., Ndem, J. U., Nwuzor, I. C., Recently emerging advancements in halloysite nanotubes polymer nanocomposites, Composite Interfaces, 2019, V. 26, No 9, pp. 751–824. DOI: 10.1080/09276440.2018.1534475
7. Amirkiai, A., Panahi-Sarmad , M., Sadeghi, G. M. M., Arjmand, M., Abrisham, M., Dehghan , P., Nazockdast , H., Microstructural design for enhanced mechanical and shape memory performance of polyurethane nanocomposites: Role of hybrid nanofillers of montmorillonite and halloysite nanotube, Applied Clay Science, 2020, V. 198, p. 105816. DOI: 10.1016/j.clay.2020.105816
8. Bulbul, Y. E., Ok u r, M., Dem i r t as-Kork ma z , F., Dilsi z , N., Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system, Applied Clay Science, 2020, V. 186, p. 105430. DOI: 10.1016/j.clay.2019.105430
9. Eryildiz , M ., A ltan , M ., Fabrication of polylactic acid/halloysite nanotube scaffolds by foam injection molding for tissue engineering, Polymer Composites, 2020, V. 41, No 2, pp. 757–767. DOI: 10.1002/pc.25406
10. Hamedi , S., Koosha , M ., Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment, Applied Clay Science, 2020, V. 197, P. 105770. DOI: 10.1016/j.clay.2020.105770
11. Prashantha, K . , Lacrampe , M. F. , Krawczak , P. , Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties, Express Polymer Letters, 2011, V. 5, No 4, pp. 295–307. DOI: 10.3144/expresspolymlett.2011.30
12. Du, M., G uo, B., L ei, Y., Liu , M., Jia , D., Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance, Polymer, 2008, V. 49, No 22, pp. 4871–4876. DOI: 10.1016/j.polymer.2008.08.042
13. Prashantha , K., Lacrampe , M. F., Krawczak , P., Highly dispersed polyamide‐11/halloysite nanocomposites: Thermal, rheological, optical, dielectric, and mechanical properties, Journal of Applied Polymer Science, 2013, V. 130, No 1, pp. 313–321. DOI: 10.1002/app.39160
14. Krishnaiah, P., Manickam , S., Ratnam, C. T., Raghu , M . S., Parashuram , L., Prasanna Kumar, S., Jeon, B. H., Mechanical, thermal and dynamic-mechanical studies of functionalized halloysite nanotubes reinforced polypropylene composites, Polymers and Polymer Composites, 2021, V. 29, No 8, pp. 1212–1221. DOI: 10.1177/0967391120965115
15. Krishnaiah, P., Ratnam, C. T., M a nick am, S., Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties, Applied Clay Science, 2017, V. 135, pp. 583–595. DOI: 10.1016/j.clay.2016.10.046
16. Pasbakhsh, P., Churchman, G. J., Keeling, J. L., Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers, Applied Clay Science, 2013, V. 74, pp. 47–57. DOI: 10.1016/j.clay.2012.06.014
17. Aytekin , M. T., Hosgün , H . L ., Characterization studies of heat-treated halloysite nanotubes, Chemical Papers, 2020, V. 74, No 12, pp. 4547–4557. DOI: 10.1007/s11696-020-01263-6
18. Le, Ba T., Alkurdi, A. Q., Lukács , I. E ., Molnár, J., Wongwises , S., Gróf, G., Szilágyi, I. M., A novel experimental study on the rheological properties and thermal conductivity of halloysite nanofluids, Nanomaterials, 2020, V. 10, No 9, p. 1834. DOI: 10.3390/nano10091834
19. Atyaksheva, L . F. , Kasyanov, I . A . , Galluazit – prirodnye alyumosilikatnye nanotrubki: strukturnye osobennosti i adsorbcionnye svojstva [Halloysite – natural aluminosilicate nanotubes: structural features and adsorption properties], Sovremennye molekulyarnye sita, 2021, V. 3, No 2, pp. 124–143. DOI: 10.53392/27130304_2021_3_2_124
20. Na mbia r, A. P., Pillai, R., Sa nyal, M., Vad i k keet t il, Y., Sh r ivast av, P. S., A starch based sustainable bio-hybrid composite for surface assimilation of methylene blue: preparation, characterization, and adsorption study, Environmental Science: Advances, 2023, V. 2, No 6, pp. 861–876. DOI: 10.1039/ D2VA00274D
21. D yatlova , E . M., Bobkova , N. M., Se rg iev ich , O. A., IK-spektroskopicheskoe issledovanie kaolinovogo syr’ya belorusskih mestorozhdenij [IR-spectroscopic study of kaolin raw materials from Belarusian deposits], Problemy nedropol’zovaniya, 2019, V. 21, No 2, pp. 143–149. DOI: 10.25635/2313-1586.2019.02.143
22. Xu , J., Reiter, G., Alamo, R . G., Concepts of nucleation in polymer crystallization, Crystals, 2021, V. 11, No 3, p. 304. DOI: 10.3390/cryst11030304
23. K apitonova , Iu. V., La za reva , N. N., Ta rasova , P. N., Ok h lopkova , A. A., Lau kka nen, S., Mu k h i n, V. V., Morphology analysis of friction surfaces of composites based on PTFE and layered silicates, Polymers, 2022, V. 14, No 21, p. 4658. DOI: 10.3390/polym14214658
24. Kapitonova, Iu . V., Tarasova, P. N., Okhlopkova, A . A ., Lazareva , N. N., Tribohimicheskie reakcii, protekayushchie na poverhnosti treniya kompozitov na osnove PTFE, napolnennogo sloistymi silikatami [Tribochemical reactions occurring on the friction surface of PTFE-based composites filled with layered silicates], Yuzhno-Sibirskij nauchnyj vestnik, 2024, No 2, pp. 98–106. DOI: 10.25699/SSSB.2024.54.2.012
25. Sleptsova, S. A ., Okhlopkova , A . A ., Kapitonova , Iu. V., Lazareva , N. N., Makarov, M. M., Nikiforov, L. A., Spektroskopicheskie issledovaniya tribookislitelnykh protsessov modifitsirovannogo PTFE [Spectroscopic studies of tribooxidative processes of modified PTFE], Trenie i iznos, 2016, V. 37, No 2, pp. 168–176.
Review
For citations:
Tarasova P.N., Kapitonova Yu.V., Sivtseva-Gladkina N.P., Lazareva N.N., Okhlopkova A.A., Kychkina Yu.V., Kanaeva A.A. Structure and properties of polymer composite materials based on polytetrafluoroethylene and halloysite of different grades. Voprosy Materialovedeniya. 2025;(3(123)):108-121. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-108-121






















