Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of oscillatory process energy on the structure and properties of composite material

https://doi.org/10.22349/1994-6716-2025-123-3-122-135

Abstract

A new method of pressing composites modified with carbon fillers is presented, with additional complex impact of ultrasonic vibrations at 17 kHz and superimposed low-frequency amplitude modulation at 100 Hz. Thus, impact of this kind made it possible to reduce the intensity of mass wear of composite samples under dry friction by 1000 times compared to polytetrafluoroethylene samples and at the same time maintain the friction coefficient of the original polymer. It is shown that ultrasonic vibrations promote disaggregation of nanosized particles, and simultaneously superimposed low-frequency amplitude modulation leads to an ordered distribution of the filler in the polymer matrix. This mode ensures the production of a defect-free structure due to compaction of the composite mixture and helps to eliminate pores and cracks in the volume of the material.

About the Authors

D. A. Negrov
Omsk State Technical University
Russian Federation

Cand Sc. (Eng) 

11 Mira Ave, 644050 Omsk 



V. Yu. Putintsev
Omsk State Technical University
Russian Federation

Cand Sc. (Eng) 

11 Mira Ave, 644050 Omsk 



E. V. Knyazev
Omsk State Technical University
Russian Federation

Cand Sc. (Eng) 

11 Mira Ave, 644050 Omsk 



A. I. Glotov
Omsk State Technical University
Russian Federation

11 Mira Ave, 644050 Omsk 



D. A. Weber
Omsk State Technical University
Russian Federation

11 Mira Ave, 644050 Omsk 



References

1. Wang, J., Yan , F., Xue, Q., Tribological behavior of PTFE sliding against steel in sea water, Wear, 2009, V. 267, No 9–10, pp. 1634–1641. URL: https://doi.org/10.1007/s11434-009-0578-4

2. Alam, K.I., Dora zio, A., Burris, D.L., Polymers tribology exposed: eliminating transfer film effects to clarify ultralow wear of PTFE, Tribology Letters, 2020, V. 68, Art. 67. URL: https://doi.org/10.1007/s11249-020-01306-9

3. Conte, М., Fernandez , B., Iga r t u a , A., Effect of surface temperature on tribological behavior of PTFE composites, Surface Effects and Contact Mechanics X, 2011, V. 71, pp. 219–230. URL: https://doi.org/10.2495/978-1-78466-167-0/019

4. A ment a , F., Bolelli, G., Ped ra zzi, S., A llesi na , G., Sa ntera mo, F., Ber t a r i n i, A., Sassatelli, P., Lusva rg h i, L., Sliding Wear Behaviour of Fibre-Reinforced PTFE Composites against Coated and Uncoated Steel, Wear, 2021, V. 486, p. 204097. URL: https://dx.doi.org/10.1016/j.wear.2021.204097

5. Li, J., Ran, Y., Evaluation of the Friction and Wear Properties of PTFE Composites Filled with Glass and Carbon Fiber, Materialwissenschaft und Werkstofftechnik, 2010, V. 41, No 2, pp. 115–118. URL: https://doi.org/10.1002/mawe.200900545

6. Sawae, Y., Morit a , T., Takeda , K., Onitsu ka , S., K aneut i, J., Yamaguch i, T., Sugimura , J., Friction and Wear of PTFE Composites with Different Filler in High Purity Hydrogen Gas, Tribology International, 2021, V. 157, p. 106884. URL: https://doi.org/10.1016/j.triboint.2021.106884

7. Chen , W.X., Li, F., Han , G., Xia , J.B., Wang, L .Y., Tu , J.P., Xu , Z .D., Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites, Tribology Letters, 2003, V. 15, No 3, pp. 275–278. URL: https://doi.org/10.1023/A:1024869305259

8. Mashkov, Yu.K., Kurguzova. O.A., Ruban, A.S., Razrabotka i issledovanie iznosostoikikh polimernykh kompozitov [Development and research of wear-resistant polymer composites], Vestnik Sibirskoi gosudarstvennoi avtomobilno-dorozhnoi akademii, 2018, V. 15, No 1, pp. 36–45.

9. Nikitina , A .V., Okhlopkova , A . A ., Vasiliev, A . P., Issledovanie vliyaniya nanorazmernogo nitrida bora na svoistva politetraftoretilena [Investigation of the effect of nanoscale boron nitride on the properties of polytetrafluoroethylene], Proceedings of the conference “Nauka, innovatsii i tekhnologii: ot idei k vnedreniyu”, Komsomolsky-na-Amure gosudarstvenny universitet, 7–11 February, 2022, pp. 329–333.

10. Ok h lopkova , A.A., Ad r ia nova , O.A., Popov, S.N., Modifikatsiya polimerov ultradispersnymi soedineniyami [Modification of polymers by ultrafine compounds], Yakutsk: Izd-vo SO RAN, 2003.

11. Ronghao, L ., Keqiang, L ., Haiyong, T., Jianmin, X ., Shaoquan , L ., Mechanical Properties of Plasma-Treated Carbon Fiber Reinforced PTFE Composites with CNT, Surface and Interface Analysis, 2017, V. 49, No 11, pp. 1064–1068. URL: https://doi.org/10.1002/sia.6278

12. Vasilev, A. P., Lazareva, N. N., Struchkova, T. S., Okhlopkоva, A. A., Danilov a, S. N., Mechanical and Tribological Properties of Polytetrafluoroethylene Modified with Combined Fillers: Carbon Fibers, Zirconium Dioxide, Silicon Dioxide and Boron Nitride, Polymers, 2023, V. 15, No 2, pp. 313–326. URL: https://doi.org/10.3390/polym15020313

13. Rennhofer, H., Zanghellini , B., Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review, Nanomaterials, 2021, V. 11, No 6, pp. 1469–1496. URL: https://doi.org/10.3390/nano11061469

14. Negrov, D. A. , Putintsev, V.Yu . , Vliyanie nizkochastotnoi modulyatsii na mekhanicheskie svoistva i tribotekhnicheskie kharakteristiki polimernykh kompozitsionnykh materialov [The effect of low-frequency modulation on the mechanical properties and tribotechnical characteristics of polymer composite materials], Polzunovsky vestnik, 2021, No 4, pp. 140–145. URL: https://doi.org/10.251712/ASTU.2072-8921.2021.04.018

15. Negrov, D. A., Eremin , E . N., Povyshenie koeffitsienta usileniya i chastotnoi ustoichivosti ultrazvukovoi volnovodnoi sistemy [Increasing the gain coefficient and frequency stability of an ultrasonic waveguide system], Omsky nauchny vestnik, 2012, V. 110, No 2, pp. 94–97.

16. Negrov, D.A., Eremin, E.N., Putintsev, V.Yu., Peredelskaya , O.A., Raschet ultrazvukovykh volnovodnykh sistem dlya razlichnykh tekhnologicheskikh protsessov [Calculation of ultrasonic waveguide systems for various technological processes], Rossiya molodaya: peredovye tekhnologii – v promyshlennost, 2013, No 1, pp. 99–102.

17. Negrov, D. A ., Putintsev, V.Yu ., Usovershenstvovanie tekhnologii pressovaniya izdely iz politetraftoretilena [Improving the technology of pressing polytetrafluoroethylene products], Zhurnal Sibirskogo federalnogo universiteta. Ser.: Tekhnika i tekhnologii, 2021, V. 14, No 5, pp. 564–571.

18. Negrov, D. A. , Putintsev, V.Yu. , Glotov, A. I. , Vliyanie usovershenstvovannoi tekhnologii pressovaniya na strukturoobrazovanie politetraftoretilena [The influence of improved pressing technology on the structure formation of polytetrafluoroethylene], Polzunovsky vestnik, 2024, No 1, pp. 240–244.

19. Negrov, D. A ., Putintsev, V.Yu ., Vliyanie nizkochastotnoi modulyatsii na mekhanicheskie svojstva i tribotekhnicheskie kharakteristiki polimernykh kompozitsionnykh materialov [The effect of low-frequency modulation on the mechanical properties and tribotechnical characteristics of polymer composite materials], Polzunovsky vestnik, 2021, No 4, pp. 140–145.

20. Okhlopkova, A.A., Str uchkova, T.S., Vasiliev, A.P., Alekseev, A.G., Dyakonov, A.A., Vliyanie termicheskoi obrabotki na nadmolekulyarnuyu strukturu poroshka politetraftoretilena [The effect of heat treatment on the supramolecular structure of polytetrafluoroethylene powder], Vestnik Severo-Vostochnogo federalnogo universiteta im. M.K. Ammosova, 2016, V. 54, No 4, pp. 48–57.

21. Klaas, N.V., Marcus, K., Kellock , C., The Tribological Behaviour of Glass Filled Polytetrafluoroethylene, Tribology International, 2005, V. 38, Is. 9, pp. 824–833. URL: https://doi.org/10.1016/j.triboint.2005.02.010

22. Alam, K. I., Burris , D. L ., Ultralow Wear Poly (Tetrafluoroethylene): A Virtuous Cycle of Wear Reduction and Tribochemical Accumulation, Journal of Physical Chemistry C, 2021, V. 125, No 35, pp. 19417–19427. URL: https://doi.org/10.1021/acs.jpcc.1c03885

23. Sa mad , M.A., Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review, Polymers, 2021, V. 13, No 4, pp. 608–647. URL: https://doi.org/10.3390/polym13040608

24. Z ha ng, F., Z ha ng, J., Z hy, Y., Wa ng, X., Microstructure and Properties of Polytetrafluoroethylene Composites Modified by Carbon Materials and Aramid Fibers, Coatings, 2020, V. 10, No 11, pp. 1103–1123. URL: https://doi.org/10.3390/coatings10111103

25. Shi, Y., Feng, X., Wa ng, H., Tribological and Mechanical Properties of PTFE Composites Filled with the Combination of Short Carbon Fiber and Carbon Nanofiber, Key Engineering Materials, 2007, V. 334–335, pp. 689–692. URL: https://doi.org/10.4028/www.scientific.net/KEM.334-335.689

26. X iao, W., Ji, X., Effect of nano fillers on the properties of polytetrafluoroethylene composites: Experimental and theoretical simulations, Journal of Applied Polymer Science, 2021, V. 138, No 45, p. 51340. URL: https://doi.org/10.1002/app.51340

27. Neg rov, D.A., P ut i ntsev, V.Y., K nya zev, E.V., The effect of ultrasonic and low-frequency vibrations during pressing on the morphology and tribological properties of a polymer composite, Journal of Mechanical Science and Technology, 2025, V. 39, No 4, pp. 1141–1149. URL: https://doi.org/10.1007/s12206-025-0210-9


Review

For citations:


Negrov D.A., Putintsev V.Yu., Knyazev E.V., Glotov A.I., Weber D.A. Influence of oscillatory process energy on the structure and properties of composite material. Voprosy Materialovedeniya. 2025;(3(123)):122-135. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-122-135

Views: 6


ISSN 1994-6716 (Print)