Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure

https://doi.org/10.22349/1994-6716-2018-95-3-22-47

Abstract

The results of the choice of rational alloying and microalloying of cold-resistant steels with a guaranteed yield strength of 315–750 MPa are presented on the basis of the established interrelationship of phase transformations, structure, mechanical properties and performance characteristics when varying the content of basic alloying elements. Quantitative requirements for various structural parameters and their maximum permissible difference in sheet metal thickness up to 100 mm have been developed, depending on the strength category, manufacturing technology (thermomechanical treatment with accelerated cooling, hardening from separate furnace or rolling heating with high temperature tempering), which provide guaranteed characteristics of strength, cold resistance (impact work KV at test temperature –60 ... –80°С, critical temperatures of viscousbrittle transition Тк and zero ductility NDT) and crack resistance under the criterion of the critical opening in the top CTOD fracture.

About the Author

O. V. Sych
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sci. (Eng)

49 Shpalernaya St, 191015, St Petersburg



References

1. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Khlusova, E.I., Printsipy legirovaniya, fazovye prevrashcheniya, struktura i svoistvakhladostoykikh svarivayemykh sudostroitelnykh staley [Principles of alloying, phase transformations, structure and properties of cold-resistant welded shipbuilding steels], Metallovedenie i termicheskaya obrabotka metallov, 2007, No 1, pp. 9–15.

2. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Khlusova, E.I., Khladostoykie stali dlya tekhnicheskikh sredstv osvoyeniya arkticheskogo shelfa [Cold-resistant steels for technical means of development of the Arctic shelf], Voprosy Materialovedeniya, 2009, No 3 (59), pp.108–126.

3. Orlov, V.V., Printsipy upravliayemogo sozdaniya strukturnykh elementov nanorazmernogo mashtaba v trubnykh staliakh pri znachitelnykh plasticheskikh deformatsiyakh [Principles of managing the creation of nanoscale structural elements in pipe steels with significant plastic deformations], Voprosy Materialovedeniya, 2011, No 2 (66), pp. 5–17.

4. Sych, O.V., Khlusova, E.I., Orlov, V.V., Kruglova, A.A. Usovershenstvovanie khimicheskogo sostava i tekhnologicheskikh rezhimov proizvodstva shtripsa K65–K70 (KH80–KH90) na baze imitatsionnogo modelirovaniya [Improvement of the chemical composition and technological modes of production of strips K65–K70 (X80–X90) on the basis of simulation], Metallurg, 2013, No 2, pp. 50–58.

5. Korotovskaya, S.V., Orlov, V.V., Khlusova, E.I., Upravlenie protsessami strukturoobrazovaniya pri termomekhanicheskoyobrabotke sudostroitelnykh i trubnykh staley unifitsirovannogo khimicheskogo sostava [Control of the processes of structure formation in thermomechanical processing of shipbuilding and pipe steels of unified chemical composition], Metallurg, 2014, No 5, pp. 71–78.

6. Khlusova, E.I., Zisman, A.A., Soshina, T.V., Postroenie i ispolzovanie kart strukturnykh izmeneniy pri goriachey deformatsii austenita nizkouglerodistoy stali 09ХН2МДФdlia optimizatsii promyshlennykh tekhnologiy [Construction and use of mapsof structural changes during hot deformation of austenite of low-carbon steel 09KhN2MDF for optimization of industrial technologies], Voprosy Materialovedeniya, 2013, No1 (73), pp. 37–48.

7. Pazilova, U. A., Khlusova, E. I., Kniaziuk, T. V., Vliyanie rezhimov goriachey plasticheskoy deformatsii pri zakalke s prokatnogo nagreva na strukturu i svoistva ekonomnolegirovannoy vysokoprochnoy stali [Influence of the modes of hot plastic deformation during quenching from rolling heating on the structure and properties of economically alloyed high-strength steel], Voprosy Materialovedeniya, 2017, No 3 (91), pp. 7–19.

8. Gusev, M.A., Ilyin, A.V., Larionov, A.V., Sertifikatsiya sudostroitelnykh materialov dlia sudov, ekspluatiruyuschikhsia v usloviyakh Arktiki [Certification of shipbuilding materials for ships operating in the Arctic], Sudostroenie, 2014, No 5 (816), pp. 39–43.

9. Kazakov, A.A., Kiselev, D.V., Sovremennye metody otsenki kachestva struktury metallov na osnove panoramnykh issledovaniy s pomoschyu analizatora izobrazheny Thixomet [Modern methods for assessing the quality of the structure of metals on the basis of panoramic studies using the Thixomet image analyzer], Perspektivnye materialy: Handbook, Toliatti: Toliattinsky gosudarstvenny universitet, 2013, V. 5.

10. Kazakov, A.A., Kazakova, E.I., Kiselev, D.V., Motovilina, G.D., Razrabotka metodov otsenki mikrostrukturnoy neodnorodnosti trubnykh staley [Development of methods for estimating the microstructural inhomogeneity of tubular steels], Chernye metally, 2009, No 12, pp. 12–15.

11. Khlusova, E.I., Golosienko, S.A., Motovilina, G.D., Pazilova, U.A., Vliyanie legirovaniya na strukturu i svoistva vysokoprochnoy khladostoykoy stali posle termicheskoyi termomekhanicheskoy obrabotki [Influence of doping on the structure and properties of high‐strength cold‐resistant steel after thermal and thermomechanical processing], Voprosy Materialovedeniya, 2007, No 1 (49), pp. 20–31.

12. Golosienko, S.A., Motovilina, G.D., Khlusova, E.I., Vliyanie struktury, sformirovannoy pri zakalke, na svoistva vysokoprochnoy khladostoykoy stali posle otpuska [Influence of the structure formed during quenching on the properties of high-strength cold-resistant steel after tempering], Voprosy materialovedeniya, 2008, No 1 (53), pp. 33–46.

13. Sych, O.V., Khlusova, E.I., Golosienko, S.A., Orlov, V.V., Mileykovsky, A.B., Galkin, V.V., Denisov, S.V., Stekanov, P.A., Malakhov, N.V., Patent RF No RU 2465346, Sposob proizvodstva vysokoprochnogo shtripsa dlya trub magistralnykh truboprovodov [Method for manufacturing high-strength strip for pipes of main pipelines], Bulletin No 30 dated 27.10.2012.

14. Malyshevsky, V.A., Khlusova, E.I., Golosienko, S.A., Khomiakova, N.F., Miliuts, V.G., Pavlova, A.G., Pazilova, U.A., Afanasyev, S.Yu., Gusev, A.A., Patent RF No RU 2507295, Vysokoprochnaya khladostoykaya Arc-stal [High-strength cold-resistant Arc-steel], Bulletin No 5 dated 20.02.2014.

15. Sych, O.V., Orlov, V.V., Khlusova, E.I., Yashina, E.A., Golubeva, M.V., Yakovleva, E.A., Mitrofanov, A.V., Sychiov, O.N., Gorodetsky, V.I., Patent RF No RU 2653748, Khladostoykaya svarivayemaya stal i izdelie, vypolnennoe iz neye (varianty)[Cold-resistant welded steel and an article made of it (variants)], Bulletin No 14 dated 14.05.2018.

16. Sych, O.V., Khlusova, E.I., Golosienko, S.A., Yashina, E.A., Pazilova, U.A., Novoskoltsev, N.S., Golubeva, M.V., Belyaev, V.A., Masanin, N.I., Gusev, M.A., Application for the patent No 2016150730 dated 23.12.2016, Khladostoykaya svarivaemaya Arc-stal povyshennoy prochnosti [Cold-resistant weldable Arc-steel of increased strength].

17. Zisman, A.A., Petrov, S.N., Ptashnik, A.V., Kolichestvennaya attestatsiya beynitomartensitnykh struktur vysokoprochnykh legirovannykh staley metodami skaniruyushchey elektronnoy mikroskopii [Quantitative attestation of bainitic-martensitic structures of high-strength alloyed steels by scanning electron microscopy methods], Metallurg, 2014, No 11, pp. 91–95.

18. Kang, J.-Y., Kim, D.H., Baik, S.-I., Ahn, T.-H., Kim, Y.-W., Han, H.N., Oh, K.H., Lee, H.-Ch., Han, S.H., Phase analysis of steels by grain-averaged EBSD Functions, ISIJ International, 2011, V. 51, No 1, pp. 130–136.

19. Ilyin, A.V., Gusev, M.A., Novye metodiki issledovaniya soprotivleniyarazrusheniyu metalla trub dlya magistralnykh gazoprovodov [New methods for studying the resistance to the destruction of metal pipes for main gas pipelines], Chernaya metallurgiya. Bulletin nauchno-tekhnicheskoy i ekonomicheskoy informatsii, 2013, No 6 (1362), pp. 47–60.

20. Sych, O.V., Gusev, M.A., Bashaev, V.K., Motovilina, G.D., Ryabov, V.V., Khladostoykost vysokoprochnoy legirovannoy stali s predelom tekuchesti 500 MPa [Cold resistance of highstrength alloy steel with a yield strength of 500 MPa], Nauchno-tekhnicheskiy sbornik Rossiyskogo morskogo registra sudokhodstva, 2014, No 37, pp. 29–38.

21. Sych, O.V., Kruglova, A.A., Schastlivtsev, V.M., Tabatchikova, T.I., Yakovleva, I.L., Vliyanie vanadiya na dispersionnoe uprochnenie pri otpuske vysokoprochnoy trubnoy stali s razlichnoy iskhodnoy strukturoy [Influence of vanadiumon dispersion hardening during tempering of highstrength tubular steel with different initial structure], Fizika metallov i metallovedeniye, 2016, V.117, No 12, pp. 1321–1331.

22. Wilson, J.A., et al., Dispersion strengtheningin vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2: Chemical characterisation of dispersion strengthening precipitates, Materials Science and Technology, 2007, V. 23, pp. 509–518.

23. Golosienko, S.A., Soshina, T.V., Khlusova, E.I., Novye vysokoprochnye khladostoykie stali dlya arkticheskogo primeneniya [New high-strength cold-resistant steels for the Arctic application], Proizvodstvo prokata, 2014, No 2, pp. 17–24.

24. Sych, O.V., Orlov, V.V., Kruglova, A.A., Khlusova, E.I., Izmenenie struktury vysokoprochnoy trubnoy stali klassa prochnosti K70–K80 pri varyirovanii rezhimov vysokotemperaturnogo otpuska posle termomekhanicheskoy obrabotki [Changing the structure ofhigh-strength tubular steel of strength class K70–K80 with varying high-temperature tempering modes after thermomechanical processing], Voprosy Materialovedeniya, 2011, No 1 (65), pp. 89–99.

25. Sych, O.V., Golubeva, M.V., Khlusova, E.I., Razrabotka khladostoykoy svarivaemoy stali kategorii prochnosti 690 MPa dlya tiazhelonagruzhennoy tekhniki, rabotayushchey v arkticheskikh usloviyakh [Development of cold-resistant welded steel of strength category 690 MPa for heavy-duty equipment operating in arctic conditions], Tiazheloe mashinostroenie, 2018, No 4, pp. 17–25.

26. Odessky, P.D., Smirnov, L.A., O primenenii vanadiya i niobiya v mikrolegirovannykh staliakh dlia metallicheskikh konstruktsiy [On the application of vanadium and niobium in microalloyed steels for metal structures], Stal, 2005, No 6, pp. 116–123.

27. Fernandez, A.I., Uranga, P., Lopez, B., Rodrigues-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels, Materials Science and Engineering, 2003, No 361, pp. 367–376.

28. Soshina, T.V., Zisman, A.A., Khlusova, E.I., Vliyanie mikrolegirovaniya niobiem na rekristallizatsionnye protsessy v austenite nizkouglerodistykh legirovannykh staley [Influence of microalloying of niobium on recrystallization processes inaustenite of low-carbon alloyed steels], Voprosy Materialovedeniya, 2013, No 1 (73), pp. 31–36.

29. Nastich, S.Yu., Vliyanie morfologii beynitnoysostavlyayushchey mikrostruktury nizkolegirovannoy stali KH70 na khladostoykost prokata bolshikh tolshchin [Influence of the morphology of the bainitic component of the microstructure of low-alloy steel X70 on the cold resistance of large-thickness rolling], Metallurg, 2012, No 3, pp. 62–69.

30. Kazakov, A.A., Kiselev, D.V., Kazakova, E.I., Kurochkina, O.V., Khlusova, E.I., Orlov, V.V., Vliyanie strukturnoy anizotropii v ferritno-beynitnykh shtripsovykh stalyakh posle termomekhanicheskoy obrabotki na uroven ikh mekhanicheskikh svoistv [Influence of structural anisotropy in ferritic-bainitic strips steels after thermo-mechanical treatment on the level of their mechanical properties], Chernye metally, 2010, No 6, pp. 7–13.

31. Pyshmintsev, I.Yu., Boryakova, A.N., Smirnov, M.A., Dementieva, N.V., Svoistva nizkouglerodistykh staley, soderzhashchikh v strukture beinit [Properties of low-carbon steels containing in the structure of bainite], Metallurg, 2009, No 12, pp. 45–50.

32. Petrov, R., Kestens, L., Wasilkowska, A., Houbaert, Y., Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique, Materials Science and Engineering, 2007, V. 447, pp. 285–297.

33. Wright, S.I., Nowell, M.M., Field, D.P., A review of strain analysis using electron backscatter diffraction, Microscopy and Microanalysis, 2011, V. 17, pp. 316–329.

34. Rybin, V.V., Malyshevsky, V.A., Semicheva, T.G., Razvitie teorii vtorichnogo tverdeniya pri sozdanii vysokoprochnykh korpusnykh marok stali [Development of the theory of second hardening in the creation of high-strength vessel steel grades], Voprosy Materialovedeniya, 2005, No 2 (42), pp. 55–68.

35. Lambert-Perlade, A., Gourgues, A.F., Besson, J., et al., Mechanisms and modeling of cleavage fracture in simulated heat-affected zonemicrostructures of a high-strength low alloy steel, Metallurgical and Materials Transactions, 2004, V. l, No 35, pp. 1039–1053.

36. Guo, Z., Lee, C.S., Morris, J.W.Jr., On coherent transformations in steel, Acta Mater, 2004, V. 52, pp. 5511–5518.

37. Byounchul, H., Chang, G.L., Sung-Joon, K., Low-temperature toughening mechanism in termomechanically processed high-strength low-alloy steels, Metallurgical and Materials Transactions, 2011, V. 42, pp. 717–728.

38. Zolotorevsky, N.YU., Zisman, A.A., Panpurin, S.N., Titovets, Yu.F., Golosienko, S.A., Khlusova E.I., Vliyanie razmera zerna i deformatsionnoy substruktury austenita na kristallogeometricheskie osobennosti beinita i martensita nizkouglerodistykh staley [Influence of the grain size and the deformation substructure of austenite on the crystallographic features of bainite and martensite of lowcarbon steels], Metallovedenie i termicheskaya obrabotka metallov, 2013, No 10 (700), pp. 39–48.

39. Schastlivtsev, V.M., Blind, L.B., Rodionov, D.P., Yakovleva, N.L., Struktura paketa martensita v konstruktsionnykh stalyakh [The structure of the martensite package in structural steels], FMM, 1988, V. 66, pp. 759–769.

40. Morito, S., Huang, X., Furuhara, T., Maki, T., Hansen, N., The morphology and crystallography of lath martensite in alloy, Acta Mater, 2006, V. 54, pp. 5323–5331.

41. Takayama, N., Miyamoto, G., Furuhara, T., Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Materialia, 2012, V. 60, pp. 2387–2396.

42. Zisman, A.A., Zolotorevsky, N.Yu., Petrov, S.N., Khlusova, E.I., Yashin a, E.A., Panoramny kristallografichesky analiz evoliutsii struktury pri otpsuke nizkouglerodistoy martensitnoy stali [Panoramic crystallographic analysis of the evolution of the structure during the excavation of lowcarbon martensitic steel], Metallovedenie i termicheskaya obrabotka metallov, 2018, No 3 (753), pp. 10–17.

43. Miyamoto, G., Iwata, N., Takayama, N., Furuhara, T., Quantitative analysis of variant selection in ausformed lath martensite, Acta Mater, 2012, Vol. 60, pp. 1139–1148.


Review

For citations:


Sych O.V. Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure. Voprosy Materialovedeniya. 2018;(3(95)):22-47. (In Russ.) https://doi.org/10.22349/1994-6716-2018-95-3-22-47

Views: 582


ISSN 1994-6716 (Print)