Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optically adjustable nanocomposite electrochromic film WO3/rGO to control light transmission and protection from electromagnetic radiation

https://doi.org/10.22349/1994-6716-2020-101-1-85-96

Abstract

The paper presents results of studies of the optical and electromagnetic properties of the WO3/rGO electrochromic nanocomposite films obtained by mechanical spraying of a water-based dispersed solution with WO3/GO particles and heat treatment (annealing) at a temperature of 300°C in an inert argon atmosphere for 24 hours. As a result, an electrically conductive phase of reduced graphene oxide rGO and crystalline WO3 were formed.

About the Authors

A. V. Shchegolkov
Tambov State Technical University
Russian Federation


I. D. Parfimovich
Tambov State Technical University
Russian Federation


F. F. Komarov
Tambov State Technical University
Russian Federation
Dr Sc. (Phys-Math)


A. V. Shchegolkov
Tambov State Technical University
Russian Federation
Cand Sc. (Eng)


E. N. Tugolukov
Tambov State Technical University
Russian Federation
Dr Sc. (Eng)


References

1. P a l e n z u el a , J ., V i n u al e s , A. , O d r iz o la , I. , C ab a n e r o , G . , G r a n d e , H . J . , R u iz , V . , Flexible viologen electrochromic devices with low operational voltages using reduced oxide electrodes, ACS Applied materials & Interfaces, 2014, V. 6, No 16, pp. 14562–14567. URL: https: //doi.org/10.1021/am503869b.

2. G a d g i l , B . , D aml i n , P . , H e ino n en , M . , K v ar n s t ro m, C ., A facile one step electrostatically driven electrodeposition of polyviologen-reduced grapheme oxide nanocomposite films for enhanced electrochromic performance, Carbon, 2015, V. 89, pp. 53–62. URL: https://doi.org/10.1016/j.carbon.2015.03.020.

3. M a , L . , N i u , H . , C a i , J . , Zh a o , P . , W a n g , C . , L i a n , Y ., B a i , X . , W an g , W ., Optical, electrochemical, photoelectrochemical and electrochromic properties of polyamide / grapheme oxide with various feed ratios of polyamide to graphite oxide, J. Mater. Chem. C, 2014, No 2, pp. 2272–2282. URL: https://doi.org/10.1039/C3TC32078B.

4. M o s h n i k o v , V .A . , A l ek s an d ro v , O . A . , et a l., Nanostrukturnye oksidnye materialy v sovremennoy mikro-, nano- i optoelektronike [Nanostructured oxide materials in modern micro-, nano- and optoelectronics]. St Petersburg: LETI publ., 2017.

5. A d d i n g ton , D .M . , S c h od ek , D . L ., Smart materials and new technologies for the architecture and design professions, Elsevier Science, Oxford, 2005.

6. Z h a o , Y . , Ik eda , T ., Smart light-responsive materials. azobenze-containing polymers and liquid crystals, A John Wiley & Sons, Inc., 2009.

7. B a mf i e ld , P ., Chromic phenomena the technological applications of colour chemistry, Royal society of Chemistry (RSC), 2001.

8. S o ma n i , P . R . , R a dh ak ri sh ma n , S . , Electrochromic materials and devices: present and future, Materials Chemistry and Physics, 2002, V. 77, pp. 117–133. URL: https://doi.org/10.1016/S0254-0584(01)00575-2.

9. L a mp e r t , C . M ., Large-area smart glass and integrated photovoltaics, Solar Energy Materials & Solar Cells, 2003, V. 76, pp. 489–499. DOI: 10.1016/S0927-0248(02)00259-3.

10. G r a n q v is t , C .G . , L a n s ak e r , P . C . , M l y u k a, N . R . , N i k l a s s o n , G . A . , Ave n d a - n o , E ., Progress in chromogenics: New results for electrochromic and thermochromic materials and devices, Solar Energy Materials and Solar Cells, 2009, No 93, pp. 2032–2039. URL: https://doi.org/10.1016/j.solmat.2009.02.026.

11. K a n ag a r j , M ., V e l a y u th a m, D . , S u r y a n a r a y a n an , V . , K a t h i re s an , M . , H o , K . C ., Viologen based Electrochromic Materials and Devices, Journal of Materials Chemistry C, 2019, No 7 (16), pp. 4622–4637. DOI: 10.1039/C9TC00416E.

12. C h u d o v , K . A . , L e v c h en k o , K . S . , P o r o s h i n , N . O . , S h c h eg o l k o v , A . V . , S h melin, P.S., Grebennikov, E.P., Sintez i svoistva novykh elektrokhromnykh proizvodnykh 3-aril-4,5-bis (piridin-4-il) izoksazola [Synthesis and properties of new electrochromic derivatives of 3-aryl-4,5-bis (pyridin4-yl) isoxazole], Izvestiya akademii nauk. Seriya khimicheskaya, No 8, 2019, pp. 1565–1569.

13. R o w le y , N . M . , M o r t i me r , R . J ., New electrochromic materials, Science Progress, 2002, No 85 (3), pp. 243–262.

14. L i , Y . , M c M a s t e r , W . A . , W e i , H . , C h e n , D . , C a r u s o , R . A ., Enhanced electrochromic properties of wo3 nanotreelike structures synthesized via a two-step solvothermal process showing promise for electrochromic window application, ACS Applied Nano Materials, 2018, V. 1, No 6, pp. 2552–2558. DOI: 10.1021/acsanm.8b00190.

15. B u ch , V .R . , Ch a w l a , A . K . , R a w a l , S . K ., Review on electrochromic property for WO3 thin films using different deposition techniques, Materials today: Proceedings, 2016, V. 3, No 6, pp. 1429–1437.

16. Z h a n g , J . - G . , B e n s o n , D . K . , T r a c y , C . E . , D e b , S . K . , C za n d e r n a , A . W . , B e c h in ge r , C . , Chromic mechanism in amorphous WO3 films, Journal of The Electrochemical Society, 1996, No 144 (6), pp. 2022–2025.

17. R a u h , R . D . , W a n g , F . , R ey n o ld s , J . R . , M e c k e r , D . L ., High coloration efficiency electrochromics and their application to multi-color devices, Electrochimica Acta, 2001, V. 46, pp. 2023–2029. DOI: 10.1016/S0013-4686(01)00419-4.

18. M o n k , P . M . S . , M o r t i me r , R . J . , R o s s e ins k y , D . R ., Electrocromism and electrochromic devices, Cambridge university press, 2007. URL: https://doi.org/10.1017/CBO9780511550959.

19. S v en s s o n , J .S .E . M . , G r a n q v is t , C . G . , Electrochromic coatings for Smart Windows, Solar Energy materials, 1985, No 12, pp. 391–402. URL: https://doi.org/10.1016/0165-1633(85)90033-4.

20. B a e t en s , R . , Je l l e , B . P . , Gus t av s en , A ., Properties requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: state-of-the-art, Solar Energy Materials and Solar Cells, 2010, No 94 (2), pp. 87–105. URL: https://doi.org/10.1016/j.solmat.2009.08.021.

21. K o ma r o v , F . F. , T k a ch ev , A. G . , M i l ch a n in , O . V . , P a rf imo v i c h , I .P . , G r i n c h en ko , M . V . , P a r kho me n ko, I . N . , B ych eno k , D . S ., A composite based on epoxy polymer and carbon nanotubes: stucture optical properties and interaction with microware radiation, Advanced Materials & Technologies, 2017, No 2, pp. 19–25. DOI: 10.17277/amt.2017.02.

22. N o vos e lo v , K .S ., Nobel lecture: graphene: materials in the flatland, Reviews of modern physics, 2011, V. 83, pp. 837–849. DOI:10.1103/RevModPhys.83.837.

23. URL: https://www.sigmaaldrich.com/catalog/product/aldrich/550086?lang=en&region=RU

24. L o u l o u d a k i s , D . , T h o n g p an , W . , M o u r a ti s , K . , K o u d o u ma s , E . , K i r i a k i - d i s , G . , Si ng i ai , P . , Novel spark method for deposition of metal oxide thin films: deposition o hexagonal tungsten oxide, Physica Status Solidi A, 2019, V. 216, No 7, pp. 513–519.

25. S h ch eg o lko v , A . V . , Poluchenie nanokompozitnykh elektrokhromnykh plenok WO3/rGO metodom sprey-piroliza na steklyannykh podlozhkakh [Preparation of WO3/rGO nanocomposite electrochromic films by spray pyrolysis on glass substrates], Vektor nauki TGU (Togliatti University), 2019, No 3 (49), pp. 69–76.


Review

For citations:


Shchegolkov A.V., Parfimovich I.D., Komarov F.F., Shchegolkov A.V., Tugolukov E.N. Optically adjustable nanocomposite electrochromic film WO3/rGO to control light transmission and protection from electromagnetic radiation. Voprosy Materialovedeniya. 2020;(1(101)):85-96. (In Russ.) https://doi.org/10.22349/1994-6716-2020-101-1-85-96

Views: 409


ISSN 1994-6716 (Print)