Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fiber-based hybrid polymer composites for aviation: A review

https://doi.org/10.22349/1994-6716-2020-101-1-126-138

Abstract

This article discusses the main classification criteria for fiber-based hybrid polymer composite materials. Their distinctive features are analyzed; examples of hybrid PCMs are given. The experience of FSUE VIAM in the creation of hybrid PCMs is considered.

About the Authors

E. D. Kolpachkov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation


A. O. Kurnosov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation


A. P. Petrova
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
Dr Sc. (Eng)


A. E. Raskutin
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
Cand Sc. (Eng)


References

1. K a b lov , E . N ., Strategicheskie napravleniya razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda [Strategic development of materials and technologies of their recycling until 2030], Aviatsionnye Materialy i Tekhnologii, 2012, No S, pp. 7–17.

2. K a b lov , E . N ., Sovremennye materialy – osnova innovatsionnoi modernizatsii Rossii [Modern materials are the basis of innovate modernization of Russia], Metally Evrazii, 2012, No 3, pp. 10–15.

3. Kablov, E.N., Semenova, L.V., Petrova, G.N., Larionov, S.A., Perfilov a , D . N ., Polimernye kompozitsionnye materialy na termoplastichnoy matritse [Thermoplastic matrix poly mer composites], Izvestiya vysshikh uchebnykh zavedeniy, Seriya: Khimiya i khimicheskaya tekhnologiya, 2016, V. 59, No 10, pp. 61–71.

4. I b a tu l li n a , A .R ., Obzor proizvoditeley i sravnenie svoistv sverkhprochnykh vysokomodulnykh volokon [Review of manufacturers and comparison of the properties of high-strength high-modulus fibers], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, No 19, pp. 35–42.

5. Zhelezina, G.F.,Bova, V.G.,Voynov, S.I. ,K a n , A . Ch .,Perspektivy ispolzovaniya gibridnykh tkaney na osnove uglerodnykh i aramidnykh volokon v kachestve armiruyushchego napolnitelya polimernykh kompozitsionnykh materialov [Prospects for the use of hybrid fabrics based on carbon and aramid fibers as a reinforcing filler of polymer composite materials], Voprosy Materialovedeniya, 2019, No 2 (98), pp. 86–95.

6. M i k ha y l i n , Yu. A ., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials]: textbook, St Petersburg: Nauchnye osnovy i tekhnologii, 2010. URL: http://www.iprbookshop.ru/13214.html (reference date: 14/10/2019).

7. K u di nov , V . V ., K o r n e ev a , N .V . , K r yl o v , I .K ., Gibridnye polimernye kompozitsionnye materialy [Hybrid polymer composite materials], Fizika i khimiya obrabotki materialov, 2008, No 2, pp. 32–37.

8. P a r s hi na , L . V ., Issledovanie ostatochnykh napryazheniy v gibridnykh polimernykh kompozitsionnykh materialakh [Residual stresses research in hybrid polymer composite materials], Voprosy Materialovedeniya, 2001, No 1(25), pp. 24–31.

9. A g e ev a , T . G . , B a r i no v , D . Ya . , P r o sv i r ik ov , V . M ., Opredelenie teplofizicheskikh i opticheskikh kharakteristik gibridnykh kompozitsionnykh materialov dlya kryla suborbitalnogo mnogorazovogo kosmicheskogo apparata turisticheskogo klassa [Determination of thermophysical and optical characteristics of hybrid composite materials for a tourist-class suborbital reusable spacecraft wing], XLI Academic Readings in Cosmonautics, Collection of theses of readings dedicated to the memory of academician S.P. Korolev and other prominent Russian scientists – pioneers of space exploration, 2017, pp. 44–45.

10. A n d r yu s h k i n , A . Y u . , I v a n o v , V . K ., Kompozitsionnye materialy v proizvodstve letatelnykh apparatov [Composite materials in the manufacture of aircraft]: textbook, St Petersburg: Baltic State Technical University (Voenmekh), 2010.

11. M e l e sh ko , A . I. , P ol ovn ik ov , S . P ., Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fiber, carbon composites], Moscow: Sains-press, 2007.

12. K u r no sov , A .O . , V a v i lov a , M . I . , M e l n i ko v , D . A ., Tekhnologii proizvodstva steklyannykh napolniteley i issledovanie vliyaniya appretiruyushchego veshchestva na fiziko-mekhanicheskie kharakteristiki stekloplastikov [Technologies for the production of glass fillers and the study of the influence of a sizing substance on the physicomechanical characteristics of fiberglass], Aviatsionnye materialy i tekhnologii, 2018, No 1 (50), pp. 64–69. DOI: 10.18577/2071-9140-2018-0-1-64-70.

13. G u n ya ev , G . M. , Polikomponentnye vysokomodulnye kompozity [Multicomponent high modulus composites], Mekhanika polimerov, 1977, No 5, pp. 819–826.

14. S k u d r a , A . M . , B u la v s , F . Y a., Strukturnaya teoriya armirovannykh plastikov [Structural theory of reinforced plastics], Riga: Zinatne, 1978.

15. K u r no sov , A .O . , M e l n iko v , D . A ., Kharakteristiki stekloplastikov na osnove vysokodeformativnykh rasplavnykh svyazuyushchikh v usloviyakh vozdeystviya ekspluatatsionnykh faktorov [Characteristics of fiberglass based on highly deformable melt binders under the influence of operational factors], Vse materialy. Encyclopedic Reference Book, 2015, No 11, pp. 14–17.

16. Z h e l e zi n a , G .F . , G u l ya ev , I. N . , S o lo vi ev a, N . A ., Aramidnye organoplastiki novogo pokoleniya dlya aviatsionnykh konstruktsiy [A new generation of aramid organoplastics for aircraft structures], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 368–374. DOI: 10.18577/2071-9140-2017-0-S-368-378.

17. M i k ha y l i n , Yu. A ., Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymer composite materials in the engineering], St Petersburg: Nauchnye osnovy i tekhnologii, 2013.

18. P i n z et t i , R ., La fibre aramide et ses applications dans les composites hybrids, Materiaux et techniques, 1984, V.72, No 1–2, pp.43–48.

19. Zh u rko vs k y, M . E . , S a k os h ev , Z . G . , B l a zn ov , A . N ., Issledovanie mekhanicheskikh svoystv namotochnykh gibridnykh polimernykh kompozitsionnykh materialov [The study of the mechanical properties of winding hybrid polymer composite materials], Yuzhno-Sibirskiy nauchnyi vestnik, 2018, No 3 (23), pp. 39–43.

20. K i r i l lo v , V . N ., V a p i rov , Y u . M . , D r o z d , E . A . , Issledovanie atmosfernoy stoikosti polimernykh kompozitsionnykh materialov v usloviyakh atmosfery teplogo vlazhnogo klimata [Study of the atmospheric resistance of polymer composite materials in an atmosphere of a warm, humid climate], Aviatsionnye materialy i tekhnologii, 2012, No 4 (25), pp. 31–38.

21. K o lp a ch k o v , E. D . , P e t r o v a , A . P . , K u rn o s o v , A . O . , So k o lo v , I . I ., Metody formovaniya izdeliy aviatsionnogo naznacheniya iz PKM (obzor) [PCM molding methods for aviation products (review)], Trudy VIAM, 2019, No 11, article 3. URL: http://www.viam-works.ru (reference date 25/11/2019). DOI: 10.18577/2307-6046-2016-0-7-8-8.

22. P op ov , Yu . O . , K o lok ol ts e v a , T . V . , B esp a lov a , L . S ., Stekloplastik VPS-31 i gibridny kompozitsionny material VKG-5 iz odnonapravlennykh prepregov na osnove rasplavnogo svyazuyushchego i zhgutovykh ugle-, steklonapolniteley [VPS-31 fiberglass and VKG-5 hybrid composite material from unidirectional prepregs based on melt binder and carbon- and glass-fillers], Aviatsionnye materialy i tekhnologii, 2006, No 1, pp. 10–19.

23. L u ki n a , N . F . , D e me n t e v a , L. A . , A n ikh ov sk a ya , L . I . , Kleevye prepregi dlya sloistykh alyumostekloplastikov klassa SIAL [Glue prepregs for laminated aluminum-glass-reinforced plastics class SIAL], Trudy VIAM, 2014, No 1, article 5. URL: http://www.viam-works.ru (reference date19/11/2019)

24. G r a b i ln iko v , A . S . , M a sh in sk a ya , G . P . , Z he l e z in a , G .F ., Mezhsloynaya treshchinostoykost gibridnogo kompozitnogo materiala ALOR [Interlayer crack resistance of ALOR hybrid composite material], Mekhanika kompozitnykh materialov, 1994, No 2 (30), pp. 12–29. URL: http://www.viam.ru/public (reference date 19/11/2019).


Review

For citations:


Kolpachkov E.D., Kurnosov A.O., Petrova A.P., Raskutin A.E. Fiber-based hybrid polymer composites for aviation: A review. Voprosy Materialovedeniya. 2020;(1(101)):126-138. (In Russ.) https://doi.org/10.22349/1994-6716-2020-101-1-126-138

Views: 1727


ISSN 1994-6716 (Print)