

Fiber-based hybrid polymer composites for aviation: A review
https://doi.org/10.22349/1994-6716-2020-101-1-126-138
Abstract
About the Authors
E. D. KolpachkovRussian Federation
A. O. Kurnosov
Russian Federation
A. P. Petrova
Russian Federation
Dr Sc. (Eng)
A. E. Raskutin
Russian Federation
Cand Sc. (Eng)
References
1. K a b lov , E . N ., Strategicheskie napravleniya razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda [Strategic development of materials and technologies of their recycling until 2030], Aviatsionnye Materialy i Tekhnologii, 2012, No S, pp. 7–17.
2. K a b lov , E . N ., Sovremennye materialy – osnova innovatsionnoi modernizatsii Rossii [Modern materials are the basis of innovate modernization of Russia], Metally Evrazii, 2012, No 3, pp. 10–15.
3. Kablov, E.N., Semenova, L.V., Petrova, G.N., Larionov, S.A., Perfilov a , D . N ., Polimernye kompozitsionnye materialy na termoplastichnoy matritse [Thermoplastic matrix poly mer composites], Izvestiya vysshikh uchebnykh zavedeniy, Seriya: Khimiya i khimicheskaya tekhnologiya, 2016, V. 59, No 10, pp. 61–71.
4. I b a tu l li n a , A .R ., Obzor proizvoditeley i sravnenie svoistv sverkhprochnykh vysokomodulnykh volokon [Review of manufacturers and comparison of the properties of high-strength high-modulus fibers], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, No 19, pp. 35–42.
5. Zhelezina, G.F.,Bova, V.G.,Voynov, S.I. ,K a n , A . Ch .,Perspektivy ispolzovaniya gibridnykh tkaney na osnove uglerodnykh i aramidnykh volokon v kachestve armiruyushchego napolnitelya polimernykh kompozitsionnykh materialov [Prospects for the use of hybrid fabrics based on carbon and aramid fibers as a reinforcing filler of polymer composite materials], Voprosy Materialovedeniya, 2019, No 2 (98), pp. 86–95.
6. M i k ha y l i n , Yu. A ., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials]: textbook, St Petersburg: Nauchnye osnovy i tekhnologii, 2010. URL: http://www.iprbookshop.ru/13214.html (reference date: 14/10/2019).
7. K u di nov , V . V ., K o r n e ev a , N .V . , K r yl o v , I .K ., Gibridnye polimernye kompozitsionnye materialy [Hybrid polymer composite materials], Fizika i khimiya obrabotki materialov, 2008, No 2, pp. 32–37.
8. P a r s hi na , L . V ., Issledovanie ostatochnykh napryazheniy v gibridnykh polimernykh kompozitsionnykh materialakh [Residual stresses research in hybrid polymer composite materials], Voprosy Materialovedeniya, 2001, No 1(25), pp. 24–31.
9. A g e ev a , T . G . , B a r i no v , D . Ya . , P r o sv i r ik ov , V . M ., Opredelenie teplofizicheskikh i opticheskikh kharakteristik gibridnykh kompozitsionnykh materialov dlya kryla suborbitalnogo mnogorazovogo kosmicheskogo apparata turisticheskogo klassa [Determination of thermophysical and optical characteristics of hybrid composite materials for a tourist-class suborbital reusable spacecraft wing], XLI Academic Readings in Cosmonautics, Collection of theses of readings dedicated to the memory of academician S.P. Korolev and other prominent Russian scientists – pioneers of space exploration, 2017, pp. 44–45.
10. A n d r yu s h k i n , A . Y u . , I v a n o v , V . K ., Kompozitsionnye materialy v proizvodstve letatelnykh apparatov [Composite materials in the manufacture of aircraft]: textbook, St Petersburg: Baltic State Technical University (Voenmekh), 2010.
11. M e l e sh ko , A . I. , P ol ovn ik ov , S . P ., Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fiber, carbon composites], Moscow: Sains-press, 2007.
12. K u r no sov , A .O . , V a v i lov a , M . I . , M e l n i ko v , D . A ., Tekhnologii proizvodstva steklyannykh napolniteley i issledovanie vliyaniya appretiruyushchego veshchestva na fiziko-mekhanicheskie kharakteristiki stekloplastikov [Technologies for the production of glass fillers and the study of the influence of a sizing substance on the physicomechanical characteristics of fiberglass], Aviatsionnye materialy i tekhnologii, 2018, No 1 (50), pp. 64–69. DOI: 10.18577/2071-9140-2018-0-1-64-70.
13. G u n ya ev , G . M. , Polikomponentnye vysokomodulnye kompozity [Multicomponent high modulus composites], Mekhanika polimerov, 1977, No 5, pp. 819–826.
14. S k u d r a , A . M . , B u la v s , F . Y a., Strukturnaya teoriya armirovannykh plastikov [Structural theory of reinforced plastics], Riga: Zinatne, 1978.
15. K u r no sov , A .O . , M e l n iko v , D . A ., Kharakteristiki stekloplastikov na osnove vysokodeformativnykh rasplavnykh svyazuyushchikh v usloviyakh vozdeystviya ekspluatatsionnykh faktorov [Characteristics of fiberglass based on highly deformable melt binders under the influence of operational factors], Vse materialy. Encyclopedic Reference Book, 2015, No 11, pp. 14–17.
16. Z h e l e zi n a , G .F . , G u l ya ev , I. N . , S o lo vi ev a, N . A ., Aramidnye organoplastiki novogo pokoleniya dlya aviatsionnykh konstruktsiy [A new generation of aramid organoplastics for aircraft structures], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 368–374. DOI: 10.18577/2071-9140-2017-0-S-368-378.
17. M i k ha y l i n , Yu. A ., Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymer composite materials in the engineering], St Petersburg: Nauchnye osnovy i tekhnologii, 2013.
18. P i n z et t i , R ., La fibre aramide et ses applications dans les composites hybrids, Materiaux et techniques, 1984, V.72, No 1–2, pp.43–48.
19. Zh u rko vs k y, M . E . , S a k os h ev , Z . G . , B l a zn ov , A . N ., Issledovanie mekhanicheskikh svoystv namotochnykh gibridnykh polimernykh kompozitsionnykh materialov [The study of the mechanical properties of winding hybrid polymer composite materials], Yuzhno-Sibirskiy nauchnyi vestnik, 2018, No 3 (23), pp. 39–43.
20. K i r i l lo v , V . N ., V a p i rov , Y u . M . , D r o z d , E . A . , Issledovanie atmosfernoy stoikosti polimernykh kompozitsionnykh materialov v usloviyakh atmosfery teplogo vlazhnogo klimata [Study of the atmospheric resistance of polymer composite materials in an atmosphere of a warm, humid climate], Aviatsionnye materialy i tekhnologii, 2012, No 4 (25), pp. 31–38.
21. K o lp a ch k o v , E. D . , P e t r o v a , A . P . , K u rn o s o v , A . O . , So k o lo v , I . I ., Metody formovaniya izdeliy aviatsionnogo naznacheniya iz PKM (obzor) [PCM molding methods for aviation products (review)], Trudy VIAM, 2019, No 11, article 3. URL: http://www.viam-works.ru (reference date 25/11/2019). DOI: 10.18577/2307-6046-2016-0-7-8-8.
22. P op ov , Yu . O . , K o lok ol ts e v a , T . V . , B esp a lov a , L . S ., Stekloplastik VPS-31 i gibridny kompozitsionny material VKG-5 iz odnonapravlennykh prepregov na osnove rasplavnogo svyazuyushchego i zhgutovykh ugle-, steklonapolniteley [VPS-31 fiberglass and VKG-5 hybrid composite material from unidirectional prepregs based on melt binder and carbon- and glass-fillers], Aviatsionnye materialy i tekhnologii, 2006, No 1, pp. 10–19.
23. L u ki n a , N . F . , D e me n t e v a , L. A . , A n ikh ov sk a ya , L . I . , Kleevye prepregi dlya sloistykh alyumostekloplastikov klassa SIAL [Glue prepregs for laminated aluminum-glass-reinforced plastics class SIAL], Trudy VIAM, 2014, No 1, article 5. URL: http://www.viam-works.ru (reference date19/11/2019)
24. G r a b i ln iko v , A . S . , M a sh in sk a ya , G . P . , Z he l e z in a , G .F ., Mezhsloynaya treshchinostoykost gibridnogo kompozitnogo materiala ALOR [Interlayer crack resistance of ALOR hybrid composite material], Mekhanika kompozitnykh materialov, 1994, No 2 (30), pp. 12–29. URL: http://www.viam.ru/public (reference date 19/11/2019).
Review
For citations:
Kolpachkov E.D., Kurnosov A.O., Petrova A.P., Raskutin A.E. Fiber-based hybrid polymer composites for aviation: A review. Voprosy Materialovedeniya. 2020;(1(101)):126-138. (In Russ.) https://doi.org/10.22349/1994-6716-2020-101-1-126-138