

Estimate of early stages of destruction during stress corrosion cracking of pipe steels by eddy current method
https://doi.org/10.22349/1994-6716-2020-101-1-154-162
Abstract
The paper studies stress corrosion cracking (SCC) of low carbon low alloyed steels. It is shown that the use of eddy current method allows us to evaluate modifications of fine structures associated with the processes of initiation and growth of stress corrosion cracks. The dependences of the incubation time on the value of the macroelasticity limit σ0 are given. It is noted that the increase in the value of σ0 leads to an increase in the time before the initiation of the first crack. This can be explained: the limit of macroelasticity determines the beginning of microplastic flow in the material. On the basis of experimental data, the analytical dependence of the incubation period of the SCC on the value of the macroelasticity limit is obtained. The calculation error did not exceed 10%. A parameter is proposed for assessing the state of the material subject to SCC. It allows recording the passage of the stages of accumulation of micro-damages and the moment of exhaustion of a significant part of the material resource before the appearance of multiple surface macro-cracks according to the data of eddy current measurements.
Keywords
About the Authors
Ye. N. ButusovaRussian Federation
V. V. Mishakin
Russian Federation
Dr Sc. (Eng)
References
1. Dzioev, K.M., Zalitach, N.P., Problemy proizvodstva rabot po kapitalnomu remontu obyektov lineynoy chasti OAO “Gazprom” [Problems of production of works on overhaul of the facilities of the linear part of JSC Gazprom], Obslujivanie i remont gazonefteprovodov [Maintenance and repair of gas and oil pipelines]: Proceedings of the 5th International Conference, Moscow: Gazprom Expo, 2011, pp. 102–106.
2. Radionova , S.G., Zhulina , S.A., Kuznetsova , T.A., Pecherkin , A.C., Kruchinina , I.A., Grajdankin , A.I. , Pokazateli opasnosti avariy na rossiyskikh magistralnykh truboprovodakh [Indicators of danger of accidents on Russian main pipelines], Bezopasnost truda v promyshlennosti, 2015, No 11, pp. 62–69.
3. Chukhareva, N.V. , Mironov, S.A., Tikhonova, T.V., Prediction of accidents and damage to gas pipelines in Far North conditions, Oil and Gas Business, 2012, Issue 3, pp. 99–107.
4. Rodionova, I.G., Zaitsev,A.I., Udod,K.A., Baklanova, O.N.,Rol tekhnologicheskogo i metallurgicheskogo peredela v protsesse obrazovaniya stress-korrozionnykh povrezhdeniy v trubakh iz staley klassov prochnosti Kh70-Kh80 [Role of technological and metallurgical processing in the process of stress-corrosion damage formation in pipes made of steel of strength classes Kh70-Kh80], Vesti gazovoy nauki, Moscow: VNIIGAZ, 2016, No 3 (27), pp. 37–47.
5. Savonin, S.V., Moskalenko, A.V., Tyunder, A.V., et al. , Analiz osnovnykh prichin avariy, proizoshedshikh na magistralnykh gazoprovodakh [Analysis of the main causes of accidents that occurred on main gas pipelines], Neft i Gaz Sibiri, 2015, No 4 (21), pp. 4–6.
6. Goldstein, M.I., Grachev, S.V., Veksler, Yu.G., Spetsialnye stali [Special steels]: Textbook for universities, Moscow: Metallurguya, 1985.
7. Nokhrin, A.V., Chuvildeev, V.N., Starenie staley trub magistralnykh gazoprovodov [Aging of steel pipes of main gas pipelines], Vestnik Nijegorodskogo universiteta imeni N. Lobachevskogo (Lobachevsky Nizhny Novgorod University Herald), 2010, No 5 (2), pp. 171–180.
8. Pickering, F.B., Physical metallurgy and the design of steels, London: Applied Science Publishers, 1978.
9. Nerazrushayushchy kontrol i diagnostika [Non-destructive testing and diagnostics]: Handbook, Klyuev, V.V., (Ed.), Moscow: Mashinostroenie, 1995.
10. State Standard GOST 10006-80: Metal tubes. Tensile test method, Moscow: Standards Publishing House, 2010.
11. State Standard GOST 20295-85: Steel welded pipes for main gas-and-oil pipelines. Specifications, Moscow: Standards Publishing House, 2003.
12. State Standard GOST R 57173-2016: Calculation and strength testing. Methods of mechanical testing of metals. Test for stress relaxation of metals and alloys at a compression. General requirements, Moscow: Standartinform, 2016.
13. Gazprom Standards 2-5.1-148-2007: Methods of testing steels and welded compounds on corrosion resistance under stresses, Moscow: Gazprom, 2011, No 2007.
14. B i r g e r , I . A . , M a v l y u t o v , R .R ., Soprotivlenie materialov [Resistance of materials], Moscow: Nauka, 1986.
15. K o ch , G . H ., Tests for Stress-Corrosion Cracking, Advanced Materials & Processes. August, 2001, pр. 36–38.
16. K i r i c hok , P . F ., Korrozionnoe rastreskivanie alyuminiyevykh splavov i nerzhaveyushchikh staley: klyuchevye osobennosti i metody ispytaniy (obzor) [Corrosion cracking of aluminum alloys and stainless steels: key features and test methods (review)], Trudy VIAM, 2018, No 7 (67), pp. 106–116.
17. B e yg e lz i me r , Y a . I . , G e t ma n s k y, A . P ., Analiz perekhoda mikroplasticheskoy deformatsii v priblizhenii teorii protekaniya [Analysis of the transition of the microplastic deformation in the approximation of percolation theory], Problemy prochnosti, 1988, No 10, pp. 65–68.
18. N e c h a ev , Yu .S ., Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure, Physics-Uspekhi (Advances in Physical Sciences), 2008, V. 51, pp. 681–697.
Review
For citations:
Butusova Ye.N., Mishakin V.V. Estimate of early stages of destruction during stress corrosion cracking of pipe steels by eddy current method. Voprosy Materialovedeniya. 2020;(1(101)):154-162. (In Russ.) https://doi.org/10.22349/1994-6716-2020-101-1-154-162